Stem Cells for Personalized Pain Therapy Testing

Using patient-derived stem cells, researchers create laboratory neuron models that reflect a patient’s response to a pain drug.

Written byAnna Azvolinsky
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Induced pluripotent stem cells (iPSCs) from inherited erythromelalgia (IEM) study participants and healthy donors differentiating into sensory neurons.SCIENCE TRANSLATIONAL MEDICINE, L. CAO ET AL.Pain can be tough to take, and it’s also difficult to study: rodent models for pain do not necessarily translate to human pain conditions and expression of disease-causing mutations in cell lines may not precisely mimic the physiology of human pain disorders. Now, researchers have developed a new way to test pain—and, potentially, other sensory-targeting medications. Edward Stevens and James Bilsland of the Pfizer’s U.K.-based neuroscience and pain research units and their colleagues have shown that induced pluripotent stem cells (iPSCs) derived from blood samples of patients with a pain disorder can be used to create sensory neurons that recapitulate the disease phenotype. Testing a novel pain inhibitor on the patient-derived, iPSC-based neurons, the researchers recapitulated the sensitivity to the drug seen in the corresponding patients in a clinical trial.

The team’s results, published this week (April 20) in Science Translational Medicine, suggest that such a stem cell-based approach may be useful to study nerve dysfunction. “We hope this approach will have wide application to many pain states and translate to other therapeutic areas,” Stevens wrote in an email to The Scientist.

“This is an interesting and important foundational study,” Paul Knoepfler, a stem cell researcher at the University of California, Davis, who was not involved in the work, wrote in an email. “In a single study, going all the way from reprogramming cells to testing a drug on neurons made from those cells and finally to testing it on patients seems very unique.”

“What is new here is using iPSC-derived neurons as a tool ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH