Stem Cells in the Hypothalamus Slow Aging in Mice

Once implanted into animals’ brains, neural stem cells that secrete microRNA-containing vesicles seem to contribute to an anti-aging effect.

Written byAshley P. Taylor
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Hypothalamus of a transgenic mouseWIKIMEDIA, NATIONAL INSTITUTES OF HEALTHDuring adulthood, the mouse brain manufactures new neurons in several locations, including the hippocampus and the subventricular zone of the forebrain. The hypothalamus, previously identified as an area with an important role in aging, also generates new neurons from neural stem cells. In a study published today (July 26) in Nature, Dongsheng Cai and his team at the Albert Einstein College of Medicine in New York connect the dots between these two observations, reporting that hypothalamic neural stem cells have widespread effects on the rate of aging in mice

In what David Sinclair, who studies aging at Harvard Medical School and who was not involved in the work, calls a “Herculean effort,” the researchers “discovered that stem cells in the hypothalamus of the mouse play a role in overall health and life span,” he tells The Scientist.

Cai and his team found that killing hypothalamic neural stem cells accelerates aging, and transplantation additional neural stem cells into the brain region slows it down. Further, the stem cells’ anti-aging effects could be reproduced simply by administering the cells’ secreted vesicles, called exosomes, containing microRNAs (miRNAs).

“If this is true for humans, one could imagine a day when we are treated with these small RNAs injected into our bodies or even implanted with new hypothalamic stem ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies