Stem Cells Remember Substrates

The stiffness of a culture substrate affects the fates of stem cells.

Written byKerry Grens
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

WIKIMEDIA, KAIBARA87Stem cells grown on hard or soft substrates seem to note the difference, and memory of their past environments can influence their later fates. Researchers demonstrate today (March 16) in Nature Materials that human mesenchymal stem cells grown on a rigid substrate for some time become biased toward differentiating into a bone-cell lineage, whereas cells grown on softer surfaces are just as likely to eventually follow a bone- or fat-cell fate.

Key to these experiments was a phototunable hydrogel that allowed the researchers to alter the stiffness of the substrate simply by shining a light. “The report is a really great illustration of the potential to use materials as tools to understand how stem cells work,” said Matthew Dalby, a bone cell engineering researcher at the University of Glasgow who was not involved in the study.

Earlier work has shown that stem cells respond to their physical environments, and studies have implicated the transcriptional coactivators YAP and TAZ in transducing this mechanical information from the environment to the cell. For the present study, Kristi Anseth at the University of Colorado, Boulder, and her colleagues examined whether stem ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH