Straighten Out

Forces from bidirectional growth plates mechanically realign broken bones in infant mice.

Written byKate Yandell
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

SPONTANEOUS STRAIGHTENING: After a fracture, blood rushes to the site of injury, forming a hematoma (1). Next to form is the soft callus (purple), flexible tissue containing osteoblasts, chondrocytes, and other types of cells that surrounds the bone fragments (2). A bidirectional growth plate on the concave side of the fracture promotes bone growth (orange) in opposing directions, generating a force that brings the bone fragments into alignment (3). The soft callus ossifies into solid bone (4). © 2014, LISA CLARK. ADAPTED FROM FIGURE 7, ROT ET AL.

The paper
C. Rot et al., “A mechanical jack-like mechanism drives spontaneous fracture healing in neonatal mice,” Dev Cell, 31:159-70, 2014.

When people break a bone, they usually go to an orthopedist to straighten out any misaligned pieces so that the bone does not heal crookedly. But doctors have long observed that when infants get fractures—even if they receive minimal medical intervention—their bones heal reasonably straight.

The assumption had been that fractures in infants at first heal crookedly and then are reshaped through bone remodeling, a lifelong process by which old or damaged bone is resorbed and replaced. But researchers at the Weizmann Institute of Science in Rehovot, Israel, showed that mouse bone fragments realign themselves before fusing back together.

To better understand the healing ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies