Streamlining the E. coli Genetic Code

Scientists design a bacterial genome with only 57 codons.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

SCIENCE, CHRIS BICKELThe genetic code normally contains 64 codons, but researchers from Harvard University and their colleagues have designed an Escherichia coli genome with only 57 codons, replacing the others wholesale. In a paper published today (August 18) in Science, the team describes the computer-generated genome and reports on the first phases of its synthesis in the lab.

“We create something that really pushes the limit of genomes,” study coauthor Nili Ostrov, a postdoc in George Church’s lab at Harvard, told The Scientist. “The idea is that this is completely new, and we’re trying to see if it’s viable.”

In the planned 57-codon E. coli genome, each of the seven deleted codons is exchanged for a synonymous one. The team has a number of goals for the project. Once the E. coli genome is pared down to 57 codons, the seven blank codons can be reintegrated and used to introduce nonstandard amino acids, the researchers have proposed; this would open the door to creating a wider range of proteins for industrial applications.

A recoded genome also imparts resistance to viral infection and can ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Karen Zusi

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours