Stroke Alters Gut Microbiome, Impacting Recovery

A bidirectional link between the brain and the gut can improve or worsen brain injury in mice, researchers report.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Schematic showing how stroke alters gut microbiota, which primes the immune system to exert further damageARTHUR LIESZScientists are finding increasing evidence that the stomach and the brain are linked via microbes and the immune system. Researchers from the Ludwig Maximilian University of Munich in Germany have found that inducing strokes in mice altered the animals’ gut microbiota, triggering an immune response that traveled back to the brain and worsened the severity of the lesions. When the researchers transplanted fecal bacteria from healthy mice into germ-free rodents that had suffered strokes, the latter animals made a better recovery than mice that didn’t receive the healthy bacteria, the researchers reported this week (July 12) in The Journal of Neuroscience.

“It’s a very nice study,” neuroscientist Josef Anrather of Weill Cornell Medical College in New York City, who was not involved in the research, told The Scientist. The authors show that if the stroke is severe enough, it affects the gut microbiota, which then feeds back to the brain, Anrather said. “There are some implications for extending [the findings] to the clinic for stroke” in humans, he added.

Research has shown that ischemic strokes produce an inflammatory response in the brain, which activates lymphocytes—particularly T cells. Depending on their fate, these T cells can help or worsen the brain’s recovery. Accumulating evidence now suggests that microbes in the gut can influence immune activity in the brain via the so-called “gut-brain axis.” Anrather and colleagues published ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Tanya Lewis

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio