Stroke Alters Gut Microbiome, Impacting Recovery

A bidirectional link between the brain and the gut can improve or worsen brain injury in mice, researchers report.

Written byTanya Lewis
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Schematic showing how stroke alters gut microbiota, which primes the immune system to exert further damageARTHUR LIESZScientists are finding increasing evidence that the stomach and the brain are linked via microbes and the immune system. Researchers from the Ludwig Maximilian University of Munich in Germany have found that inducing strokes in mice altered the animals’ gut microbiota, triggering an immune response that traveled back to the brain and worsened the severity of the lesions. When the researchers transplanted fecal bacteria from healthy mice into germ-free rodents that had suffered strokes, the latter animals made a better recovery than mice that didn’t receive the healthy bacteria, the researchers reported this week (July 12) in The Journal of Neuroscience.

“It’s a very nice study,” neuroscientist Josef Anrather of Weill Cornell Medical College in New York City, who was not involved in the research, told The Scientist. The authors show that if the stroke is severe enough, it affects the gut microbiota, which then feeds back to the brain, Anrather said. “There are some implications for extending [the findings] to the clinic for stroke” in humans, he added.

Research has shown that ischemic strokes produce an inflammatory response in the brain, which activates lymphocytes—particularly T cells. Depending on their fate, these T cells can help or worsen the brain’s recovery. Accumulating evidence now suggests that microbes in the gut can influence immune activity in the brain via the so-called “gut-brain axis.” Anrather and colleagues published ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Accelerating Recombinase Reprogramming with Machine Learning

Accelerating Recombinase Reprogramming with Machine Learning

Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo

Products

waters-logo

Waters and BD's Biosciences & Diagnostic Solutions Business to Combine, Creating a Life Science and Diagnostics Leader Focused on Regulated, High-Volume Testing

zymo-research-logo

Zymo Research Partners with Harvard University to Bring the BioFestival to Cambridge, Empowering World-class Research

10x-genomics-logo

10x Genomics and A*STAR Genome Institute of Singapore Launch TISHUMAP Study to Advance AI-Driven Drug Target Discovery

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA