Study Bucks Belief that Oxidative Stress Is Bad for Pregnancy

Mouse experiments indicate that, contrary to observations in pregnant women, reactive oxygen species contribute to normal placental development.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Oxidative damage (brown) in placental tissues from mice with a model of preeclampsia M. NEZU ET AL., SCIENCE SIGNALING (2017)As many as 8 percent of pregnant women develop a condition known as preeclampsia, a spike in blood pressure characterized by the reduced formation of placental blood vessels. Previous research has suggested that reactive oxygen species (ROS) may play a role in triggering the untreatable condition, which causes up to 15 percent of maternal deaths and 5 percent of stillbirths globally. A handful of clinical trials have even attempted to reduce the risk of preeclampsia by targeting ROS accumulation, but treated women often had worse outcomes. Now, a study in mice published today (May 16) in Science Signaling provides a potential clue as to why: ROS may actually help protect against preeclampsia by increasing blood vessel generation in the placenta.

The results “were exactly opposite” of what the researchers had expected, coauthor Norio Suzuki, a molecular biologist at the Tohoku University Graduate School of Medicine in Japan, told The Scientist in an email. Earlier work had shown that in preeclampsia patients, ROS pile up in their placentas. “However, data from this study indicated that ROS accumulation induces placental angiogenesis in a preeclampsia mouse model and improves maternal and fetal outcomes,” he said.

Using genetically modified mice, Suzuki and his colleagues recently discovered that the Keap1-Nrf2 pathway, which induces the expression of detoxification and antioxidant enzymes, “is essential for protection of organs from damages in many types of diseases,” he explained. This led the researchers to wonder whether the system might also be involved in preeclampsia.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio