Study: Sickle Cell Mutation Driven by Pressure, Not Random Chance

New research finds that the appearance of the HbS mutation, which protects against malaria but leads to sickle cell disease when present in two copies, was more common in sperm samples from men in Ghana, where malaria risk is high, than Europeans.

Written byDan Robitzski
| 6 min read
A bright, illuminated, yellow cluster of spheres, representing a mutated base pair, stands out from a double helix of deep red base pairs joined by blue hydrogen bonds
Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

New research challenges the overarching assumption that genetic mutations occur randomly and are then either kept or discarded by natural selection. In the study, published January 14 in Genome Research, scientists found that the rate of a specific mutation with important health implications is nonrandom, occurring more or less often in different populations that have experienced specific environmental pressures over the course of generations.

University of Haifa evolutionary biologist Adi Livnat and his team analyzed tens to hundreds of millions of sperm cells from each of seven donors from Ghana and four from Europe, comparing how often mutations occurred in regions of two hemoglobin subunit genes in each group. They found that the hemoglobin S (HbS) mutation of the hemoglobin subunit beta (HBB) gene, which is known to protect against malaria but causes sickle cell disease when two copies are present, occurred more often in samples from the African cohort ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • black and white image of young man in sunglasses with trees in background

    Dan is an award-winning journalist based in Los Angeles who joined The Scientist as a reporter and editor in 2021. Ironically, Dan’s undergraduate degree and brief career in neuroscience inspired him to write about research rather than conduct it, culminating in him earning a master’s degree in science journalism from New York University in 2017. In 2018, an Undark feature Dan and colleagues began at NYU on a questionable drug approval decision at the FDA won first place in the student category of the Association of Health Care Journalists' Awards for Excellence in Health Care Journalism. Now, Dan writes and edits stories on all aspects of the life sciences for the online news desk, and he oversees the “The Literature” and “Modus Operandi” sections of the monthly TS Digest and quarterly print magazine. Read more of his work at danrobitzski.com.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform