Suited to a T

Sorting out T-cell functional and phenotypic heterogeneity depends on studying single cells.

Written byKelly Rae Chi
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

EYES ON Ts: Using intravital microscopy researchers can take an in vivo look at T cells (green and red) infiltrating a mouse tumor.IMAGE BY FRANCESCO MARANGONIActivated T cells are a diverse and ever-changing crew. What gives this type of white blood cell the ability to stamp out infection is also what makes it complicated to study. T cells express receptors that respond to specific antigens. Not only different subsets of  T cells, but individual T cells, can react to the same antigen in different ways—for example, by rapidly expanding and differentiating, by releasing distinct sets of cytokines at certain times, or by killing other cells. And, influenced by their past and present experiences, they can change their behavior over the course of months or years.

Because T cells are so flexible in form and function, and are in a constant state of transition, researchers are realizing that extracting them from blood, mashing them together, and analyzing their overall gene expression and other characteristics doesn’t capture their nuances. A more detailed analysis might well reveal clues for improving immune monitoring and developing new therapies.

Technologies that track T cells on the single-cell level are beginning to resolve these cells’ heterogeneity and to show how T-cell populations shift through their continuum of states. “There’s a growing sense that we need to understand how individual T cells behave,” says Ton Schumacher, group leader in immunology at The Netherlands Cancer Institute in Amsterdam. Different single-cell-level techniques for doing so each bring unique angles to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH