Suited to a T

Sorting out T-cell functional and phenotypic heterogeneity depends on studying single cells.

Written byKelly Rae Chi
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

EYES ON Ts: Using intravital microscopy researchers can take an in vivo look at T cells (green and red) infiltrating a mouse tumor.IMAGE BY FRANCESCO MARANGONIActivated T cells are a diverse and ever-changing crew. What gives this type of white blood cell the ability to stamp out infection is also what makes it complicated to study. T cells express receptors that respond to specific antigens. Not only different subsets of  T cells, but individual T cells, can react to the same antigen in different ways—for example, by rapidly expanding and differentiating, by releasing distinct sets of cytokines at certain times, or by killing other cells. And, influenced by their past and present experiences, they can change their behavior over the course of months or years.

Because T cells are so flexible in form and function, and are in a constant state of transition, researchers are realizing that extracting them from blood, mashing them together, and analyzing their overall gene expression and other characteristics doesn’t capture their nuances. A more detailed analysis might well reveal clues for improving immune monitoring and developing new therapies.

Technologies that track T cells on the single-cell level are beginning to resolve these cells’ heterogeneity and to show how T-cell populations shift through their continuum of states. “There’s a growing sense that we need to understand how individual T cells behave,” says Ton Schumacher, group leader in immunology at The Netherlands Cancer Institute in Amsterdam. Different single-cell-level techniques for doing so each bring unique angles to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies