Synthetic RNA Can Build Peptides, Hinting at Life’s Beginnings

Researchers engineered strands of RNA that can link amino acids together, suggesting a way that RNA and proteins may have emerged together to create the earliest forms of life.

| 2 min read
Illustration of pink strands of RNA on a blue background
Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

RNA has long been thought to be a key molecule in the primordial soup that was Earth a few billion years ago, because it can not only store genetic information but also act as an enzyme—two key functions needed for the development of life as we know it. But whether RNA-based life really existed, what it looked like, and how it evolved into the DNA-, RNA-, and protein-based organisms of today have remained open questions.

Now, a study published yesterday (May 11) in Nature points to the possibility that RNAs may have played a role in building early proteins by simply linking amino acids together. Thomas Carell, an organic chemist at Ludwig Maximilian University of Munich in Germany, and his colleagues created synthetic RNA molecules that could produce peptides up to 15 amino acids long.

The discovery “opens up vast and fundamentally new avenues of pursuit for early chemical evolution,” ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours