Targeted ER Breakdown

Researchers identify receptors that target the endoplasmic reticulum for degradation by autophagy in yeast and mice.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Illustration from Anatomy & PhysiologyWIKIMEDIA, OPENSTAX COLLEGEThe endoplasmic reticulum (ER) has specific receptors that target it for autophagy, or intracellular recycling, according to two independent studies published this month (June 3) in Nature. Hitoshi Nakatogawa of the Tokyo Institute of Technology led a team that identified these receptors in yeast. Ivan Dikic of the Goethe University School of Medicine led a team that examined the same kinds of receptors in mice.

“The major finding is that ER . . . has a homeostatic mechanism to remodel itself, to turn over its own contents,” said Dikic. “And that this mechanism, which regulates this housekeeping function, is mediated by selective autophagy.”

“Both studies report a mechanism that cells can use to selectively sequester the ER for degradation via autophagy. This is accomplished by receptors that the studies identify that bind to the ER and also to components of the autophagosome,” David Rubinsztein of the Cambridge Institute for Medical Research, who penned a commentary accompanying the studies but was not involved in the work, wrote in an e-mail to The Scientist.

Autophagy is a process by which eukaryotic cells break down and recycle their own materials. In autophagy, a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ashley P. Taylor

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio 
Zymo Research

Zymo Research Launches Microbiome Grant to Support Innovation in Microbial Sciences