Tessa Hill Wants to Save the Bivalves

The UC Davis oceanographer reconstructs ancient climate and studies the present impacts of global warming in an attempt to stave off environmental damage.

Written byCatherine Offord
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

© NAT AND CODY GANTZGrowing up on the Pacific coast, Tessa Hill developed a fascination with the sea and its wildlife. In the late ’90s, eager to see another part of the country—and another ocean—she moved to Eckerd College in Saint Petersburg, Florida, to study marine science. There, she became interested in the relationship between oceans and environmental change. “I wanted to learn more about the Earth’s climate system,” she says. “How it operated in the past, and how we might be modifying that system today.”

In 1999, Hill moved back west for a PhD at the University of California, Santa Barbara, where she worked with paleoceanographer James Kennett to document the contribution of ocean sources of methane to climate change throughout Earth’s history. “She’s very capable of choosing questions of major significance,” Kennett says of Hill, adding that on the methane project, “she just jumped right in.” During her dissertation work, Hill discovered that methane gas leaves a signature in the fossilized shells of Foraminifera—amoeboid protists found in marine sediments—that can be used to track changes in methane levels in the world’s oceans through time.1

Graduating in 2004, she moved to the University of California, Davis, to investigate more-current climate trends. “I was interested in asking questions about modern impacts ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile

Published In

July 2016

Marine Maladies

The pathogenic effects of warmer, more acidic oceans

Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD

Products

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies