Tessa Hill Wants to Save the Bivalves

The UC Davis oceanographer reconstructs ancient climate and studies the present impacts of global warming in an attempt to stave off environmental damage.

Written byCatherine Offord
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

© NAT AND CODY GANTZGrowing up on the Pacific coast, Tessa Hill developed a fascination with the sea and its wildlife. In the late ’90s, eager to see another part of the country—and another ocean—she moved to Eckerd College in Saint Petersburg, Florida, to study marine science. There, she became interested in the relationship between oceans and environmental change. “I wanted to learn more about the Earth’s climate system,” she says. “How it operated in the past, and how we might be modifying that system today.”

In 1999, Hill moved back west for a PhD at the University of California, Santa Barbara, where she worked with paleoceanographer James Kennett to document the contribution of ocean sources of methane to climate change throughout Earth’s history. “She’s very capable of choosing questions of major significance,” Kennett says of Hill, adding that on the methane project, “she just jumped right in.” During her dissertation work, Hill discovered that methane gas leaves a signature in the fossilized shells of Foraminifera—amoeboid protists found in marine sediments—that can be used to track changes in methane levels in the world’s oceans through time.1

Graduating in 2004, she moved to the University of California, Davis, to investigate more-current climate trends. “I was interested in asking questions about modern impacts ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile

Published In

July 2016

Marine Maladies

The pathogenic effects of warmer, more acidic oceans

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH