The Cancer Genes Needed for Immunotherapy Response

Using a large CRISPR-based screen, researchers find possible genetic culprits for patients not having success with immune checkpoint inhibitors.

head shot of blond woman wearing glasses
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Design of the CRISPR-based screen. Anti-tumor T cells kill a target cancer cell (top panel). Disruption of a target gene reduces or eliminates the ability of cytotoxic T cells to vanquish the tumor (bottom panel).SHASHANK PATEL, NCI, NIH Immune checkpoint inhibitor antibodies are a relatively new class of cancer drugs that are now approved to treat patients with late-stage melanoma and those with certain lung, bladder, head and neck, kidney, and other types of late-stage cancers. Some patients respond and go into long remissions when treated with these therapies, while others fare worse.

Using a genome-wide CRISPR-based screen, researchers at the National Cancer Institute (NCI) and their colleagues identify protein-coding genes that must be expressed by a tumor in order for this type of cancer immunotherapy to work. The results are published today (August 8) in Nature.

“This is an elegant study and a novel application of CRISPR library screening,” says Drew Pardoll, director of the Johns Hopkins Bloomberg-Kimmel Institute for Cancer Immunotherapy who was not involved in the work. “The study validates genes we knew [were necessary] for tumors to respond to immunotherapy and turns up a number of unexpected, potentially interesting genes.”

Focusing on CD8+ effector T-cells—the immune cells activated by immunotherapies based on immune checkpoint inhibition—the authors wanted to identify the genes that, when mutated, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky

    Anna Azvolinsky is a freelance science writer based in New York City.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo