The First Neuron Drawings, 1870s

Camillo Golgi’s black reaction revealed, for the first time, the fine structures of intact neurons, which he captured with ink and paper.

Written byAmanda B. Keener
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A FIRST LOOK: Camillo Golgi’s original black-and-white drawing of a dog’s olfactory bulb appeared in a paper in the Rivista Sperimentale di Freniatria e Medicina Legale in 1875. Colored plates appeared in reprinted versions distributed by Golgi and in the German translation of his paper. Golgi indicated three layers in his drawing. The superficial layer (A) is composed of nerve fiber bundles made of myelinated axons (black lines), a branching blood vessel (outlined in red), and glial cells (red). The nerve fiber bundles enter spheres of cell bodies called glomeruli in the middle layer (B), which consists of gray matter (nerve cell bodies and dendrites). Large mitral cells lining the middle layer (black) are arranged such that their dendrites reach toward the glomeruli, where they form synapses with the axons extending from the superficial layer. The mitral cell axons (some of which are shown in blue) aim for the inner layer (C) of the olfactory bulb. The inner layer also contains granule cells, blood vessels, glial cells, and nerve fibers.
See larger image: JPG
COURTESY OF PAOLO MAZZARELLO, SISTEMA MUSEALE DI ATENEO, PAVIA, ITALY
It’s 1873 at a hospice hospital near Milan, and a young Italian physician named Camillo Golgi is surrounded by brains and nervous tissue from animals including cows and dogs, as well as from recently departed patients. Unaware that he will one day become famous for, among many things, discovering the “Golgi body,” the 30-year-old scientist currently has a single goal: to capture the mysterious details of neurons by staining them with a concoction of his own design.

He impregnates formalin-fixed nervous tissue sections with potassium dichromate and silver nitrate, causing microcrystals of silver chromate to fill in the delicate dendrites and axons of neurons. The technique paints the structures black and makes them visible in situ for the very first time. Golgi would spend several years perfecting the reaction, which likely started out as an accidental discovery. According to Paolo Mazzarello, director of the Golgi Museum in Pavia, Italy, Golgi may have first noticed the reaction’s potential to mark neurons while staining connective tissues surrounding the brain’s blood vessels with silver nitrate, a commonly used compound at the time. “He probably saw some partial staining of the [nerve] cells,” and from there, a combination of chance and intuition led Golgi to develop ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform