The Heart of the Matter

Are miRNAs useful for tracking and treating cardiovascular disease?

Written byTerry S. Elton, Mahmood Khan, and Dmitry Terentyev
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

3D4MEDICAL / PHOTO RESEARCHERS, INC.

Rapid and accurate diagnosis of heart attacks—and the assessment of damage—is critical for improving coronary care. Mature microRNAs (miRNAs) are abundant, easily measured, and relatively stable in blood plasma. If they prove indicative of disease states, miRNAs measured from peripheral blood may be a particularly attractive source for routine clinical assessments.1

Naoharu Iwai’s lab in Osaka, Japan, and Stephane Heymans and Blanche Schroen in Maastricht, Netherlands, found greatly elevated levels of cardiac myocyte–associated miRNAs in the plasma of patients with acute myocardial infarction (AMI).2,3 Increased plasma levels of the mature miRNAs miR-208b and -499 were consistently seen in AMI patients regardless of age, sex, body mass index, systolic blood pressure, and white blood cell count. Importantly, levels of these miRNAs correlated with concentrations of cardiac ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH