The Immune Hallmarks of Severe COVID-19

Researchers are trying to make sense of immune systems gone haywire and develop biomarkers to predict who will become the sickest from a coronavirus infection.

katya katarina zimmer
| 12 min read
covid-19 sars-cov-2 coronavirus pandemic immune response severity severe biomarkers prognostic predictor neutrophil monocyte myeloid cytokine interleukin

Register for free to listen to this article
Listen with Speechify
0:00
12:00
Share

ABOVE: Scanning electron microscope image of SARS-CoV-2 (gold) emerging from the surface of cells cultured in the lab. The virus shown was isolated from a patient in the US. Image captured and colorized at NIAID’s Rocky Mountain Laboratories (RML) in Hamilton, Montana
FLICKR, NIAID

One of the most striking features of SARS-CoV-2, the virus that causes COVID-19, is the exceptional breadth of symptoms it causes in people. Of the nearly 30 million recorded infections to date, the vast majority of people experienced mild or moderate disease—which itself can range from no symptoms at all to pneumonia or long-term, debilitating neurological symptoms. A minority ended up with severe respiratory symptoms but eventually recovered. And some—nearly 940,000 worldwide, of which 196,000 are in the US—took a turn for the worse and died.

Why some people die while others recover is thought to depend in large part on the human immune response, which spirals ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • katya katarina zimmer

    Katarina Zimmer

    After a year teaching an algorithm to differentiate between the echolocation calls of different bat species, Katarina decided she was simply too greedy to focus on one field. Following an internship with The Scientist in 2017, she has been happily freelancing for a number of publications, covering everything from climate change to oncology.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit