The Gene that Makes Female Birds Drab

In some finch species, the difference between colorful males and muted females comes down to one gene, BCO2, which encodes an enzyme that degrades carotenoids.

Written byRachael Moeller Gorman
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: A European serin
© ISTOCK.COM, SELIM KAYA

The paper
M. Gazda et al., “A genetic mechanism for sexual dichromatism in birds,” Science, 368:1270–74, 2020.

Male red siskins (Spinus cucullatus), a species of finch, flaunt orange-red bellies and backs, contrasting with their black heads and dark wing markings. The females, on the other hand, are mostly muted shades of grey (though pops of orange-red and black do appear on their bellies and wings). Such differences in coloration between the sexes, called sexual dichromatism, occur in many bird species, but their root cause has confounded scientists for years.

Geneticist Miguel Carneiro of the Research Centre in Biodiversity and Genetic Resources (CIBIO) at the University of Porto in Portugal had previously discovered that a siskin gene called CYP2J19 encodes an enzyme that helps convert yellow carotenoid compounds from seeds in the birds’ diet into the red carotenoids found in their feathers. But he wanted ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After earning a bachelor’s degree in biology and neuroscience from Williams College, Rachael spent two years studying the tiny C. elegans worm as a lab tech at Massachusetts General Hospital/Harvard University. She then returned to school to get a master’s degree in environmental studies from Brown University, and subsequently worked as an intern at Scientific AmericanDiscover magazine, and the Annals of Improbable Research, the originators of the yearly Ig Nobel prizes. She now freelances for both scientific and lay publications, and loves telling the stories behind the science. Find her at rachaelgorman.com or on Instagram @rachaelmoellergorman.

    View Full Profile

Published In

September 2020

Human Paths

Archaeology and genetics are starting to resolve humanity’s origin and spread

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo