The RNA roots of obesity?

By silencing two microRNAs, researchers were able to improve insulin sensitivity in overweight mice.

Written byTia Ghose
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Obese and normal mouseIMAGE: WIKIMEDIA COMMONS, OAK RIDGE NATIONAL LABORATORY

Two upregulated microRNA molecules may lie at the heart of insulin signalling malfunctions, which can lead to obesity and type 2 diabetes, according to researchers in Switzerland. Scientists at ETH Zurich found that silencing the two microRNAs improved glucose sensitivity in obese mice, and in a paper published today (8 June) in Nature, they suggest that the findings may point the way to potential obesity treatments in humans.

“The effects they are showing are quite striking,” said Phillip Scherer, a fat cell physiologist at the University of Texas Southwestern Medical School, who was not involved in the study. The microRNAs studied in the paper were “so blatantly, obviously up-regulated in the obese state.”

MicroRNAs, or small snippets of non-coding RNA, turn off whole gene networks ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies