The Road Less Traveled

First, Aravinda Chakravarti drew a map of how scientists might unravel the genetics of complex disease. Then he blazed the trail.

| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

ARAVINDA CHAKRAVARTI
Professor of Medicine, Pediatrics,
and Molecular Biology and Genetics
Director, Center for Complex Disease Genomics
McKusick-Nathans Institute of Genetic Medicine
Johns Hopkins University School of Medicine
COURTESY OF JOHNS HOPKINS MEDICINE
Things were not unfolding according to plan. Aravinda Chakravarti had done everything right to launch a successful career: he completed a bachelor’s degree at Calcutta’s
prestigious Indian Statistical Institute, published his first paper while still an undergraduate, and completed a PhD in human genetics at the University of Texas Health Science Center at Houston in 1979. But his postdoctoral fellowship at the University of Washington was not working out. “It wasn’t very positive,” says Chakravarti. “After 4 or 5 months, I knew it wasn’t going anywhere.”

When his eldest brother told him to bail out, Chakravarti was aghast. “That is anathema to a scientist,” he says. “We believe that if you cut the cord, your academic life is over.” But, screwing up his courage, Chakravarti took the risk and left the lab after 8 months.

“I went to work out in left field. I always liked working on things where there wasn’t a crowd. I’m still like that—I
don’t like crowds.”

He obtained a low-paying job at the University of Pittsburgh and spent the next 5 years teaching biostatistics and population genetics—no computer, no lab, and no research budget. But the time was not wasted, Chakravarti says in retrospect. “It helped me develop my teaching skills and to focus on theory. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo