The Sodium Cycle

Researchers uncover weekly and monthly rhythms of sodium retention and excretion in participants of space simulations.

Written bySabrina Richards
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

stock.xchng, SnackThe body’s sodium levels, water, and blood pressure were once believed to be relatively steady, with increased sodium excretion compensating for jumps in dietary sodium ingestion. But sodium levels may be subject to hormonally-regulated rhythms, independent of sodium intake, according to research published today (January 8) in Cell Metabolism.

Taking advantage of the restricted diet and constrained environment of men undergoing simulated missions to Mars, researchers discovered that their sodium levels rose and fell in roughly 6- to 9-day-long cycles, even at constant levels of sodium intake.

The findings are “a little bit against current dogma” of sodium balance, said Christian Koch, an endocrinologist at the University of Mississippi who was not involved in the research.

Because controlling people’s sodium intake is difficult in the real world, Jens Titze at Friederich-Alexander-University in Germany jumped at the chance to study men participating in the European Space Agency’s Mars500 space simulations. The men spent months in an environment designed to simulate the cramped quarters and proscribed tasks of a trip to Mars. Their diet was tightly ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH