This Deep-Sea Fish Has the Most Types of Opsins Among Vertebrates

The silver spinyfin has an extraordinary diversity of rod photopigments, which researchers propose may allow it to see color in the deep, dark sea.

Written byKatarina Zimmer
| 4 min read
spinyfin Diretmus argenteus deep sea vision fish photopigment opsin

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: Illustration of Diretmus argenteus
WIKIMEDIA, EMMA KISSLING

For a fish with such a remarkable retina, the silver spinyfin has a rather modest appearance: its body is a small, flattened, disc bearing a frowning mouth and a ridge of short, bony spines along its belly. But its large, impressive eye, researchers report today (May 9) in Science, has earned Diretmus argenteus the honorable title of vertebrate with the most types of visual opsins—the light-sensitive proteins that form the basis of photoreceptor cells of the retina. These likely help the swimmer see in the dark, hundreds of meters below the sea surface, where it spends most of its life.

Human retinas have four types of visual opsin: three present in cone cells, which allow us to see blue, green, and red, and one in rod cells, which enables vision in dim light. The silver spinyfin produces up to 14 visual opsins in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • katya katarina zimmer

    After a year teaching an algorithm to differentiate between the echolocation calls of different bat species, Katarina decided she was simply too greedy to focus on one field of science and wanted to write about all of them. Following an internship with The Scientist in 2017, she’s been happily freelancing for a number of publications, covering everything from climate change to oncology. Katarina is a news correspondent for The Scientist and contributes occasional features to the magazine. Find her on Twitter @katarinazimmer and read her work on her website.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH