Thwarting leukemia drug resistance

Researchers identify a pathway that allows leukemia to evade a common cancer treatment -- and develop a way to block it

Written byHannah Waters
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

In acute lymphoblastic leukemia, immature white blood cells -- stained purple here -- proliferate in the marrow, crowding out normal cells and spreading to other organs. It's fatal in a few weeks without treatment.IMAGE: WIKIMEDIA COMMONS, USER VASHIDONSKyrosine kinase inhibitors (TKIs) quell unregulated cell growth and are commonly used to treat cancer, but many tumors develop resistance to the therapy. New research published today in Nature identifies a pathway that keeps the cancer cells alive long enough to evolve such resistance, and shows that inhibiting this pathway in mice with acute lymphoblastic leukemia (ALL) can prevent treatment evasion and cancer reemergence.

"This is a very important article showing a novel mechanism for ALL resistance to TKI therapy," leukemia immunologist Meir Wetzler of the Roswell Park Cancer Institute, who was not involved in the research, wrote in an email to The Scientist. "It holds promise for novel treatment approaches in patients."

Many cancers -- leukemia, breast, lung, malignant melanoma, to name a few -- contain mutations in tyrosine kinase enzymes that result in unregulated cell growth. A major breakthrough in cancer treatment was the development of Imatinib, marketed as Gleevec, which inhibits these tyrosine kinases, halting cancer growth. However, the cells do not die, but persist in a quiescent state, allowing some cancerous cells to evolve resistance to the drug and reemerge.

Oncologists then try different TKIs ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo