Thwarting leukemia drug resistance

Researchers identify a pathway that allows leukemia to evade a common cancer treatment -- and develop a way to block it

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

In acute lymphoblastic leukemia, immature white blood cells -- stained purple here -- proliferate in the marrow, crowding out normal cells and spreading to other organs. It's fatal in a few weeks without treatment.IMAGE: WIKIMEDIA COMMONS, USER VASHIDONSKyrosine kinase inhibitors (TKIs) quell unregulated cell growth and are commonly used to treat cancer, but many tumors develop resistance to the therapy. New research published today in Nature identifies a pathway that keeps the cancer cells alive long enough to evolve such resistance, and shows that inhibiting this pathway in mice with acute lymphoblastic leukemia (ALL) can prevent treatment evasion and cancer reemergence.

"This is a very important article showing a novel mechanism for ALL resistance to TKI therapy," leukemia immunologist Meir Wetzler of the Roswell Park Cancer Institute, who was not involved in the research, wrote in an email to The Scientist. "It holds promise for novel treatment approaches in patients."

Many cancers -- leukemia, breast, lung, malignant melanoma, to name a few -- contain mutations in tyrosine kinase enzymes that result in unregulated cell growth. A major breakthrough in cancer treatment was the development of Imatinib, marketed as Gleevec, which inhibits these tyrosine kinases, halting cancer growth. However, the cells do not die, but persist in a quiescent state, allowing some cancerous cells to evolve resistance to the drug and reemerge.

Oncologists then try different TKIs ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Hannah Waters

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours