Time Traveling Mini-Brains on a Mission to Conquer Space

Alysson R. Muotri discusses his launch of brain organoids into outer space and how microgravity enriches our understanding of brain development and disease.

Written byIris Kulbatski, PhD
| 4 min read
Time Traveling Mini-Brains on a Mission to Conquer Space
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Alysson Muotri’s research interests break though barriers of space and time. Conjuring scenes from a science fiction film, Muotri studies brain organoids—miniature brains derived from human pluripotent stem cells that exhibit spontaneous neural oscillations, or in other words, rudimentary brainwaves. While they mimic human brain development remarkably well, their use as a model for studying Alzheimer’s disease and dementia is limited by the late onset of these disorders. To overcome the impracticality of waiting decades for brain organoids to sufficiently mature, Muotri sends them on NASA space missions to experience microgravity. When they return to earth, the cells undergo accelerated aging, making them ideal models for brain disorders that manifest later in life. Muotri’s space and time traveling mini brains are advancing scientists’ understanding of how aging affects the brain and transforming futuristic concepts into reality.

I began looking for ways to speed up brain organoid maturation and came across ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Iris Kulbatski, PhD

    Iris, a neuroscientist by training and word surgeon by trade, is an associate science editor with The Scientist's Creative Services Team. Her work has appeared in various online and print publications, including Discover Magazine, Medgadget, National Post, The Toronto Star and others. She holds a PhD in Medical Science and a Certificate in Creative Writing from the University of Toronto. Her left and right brain converse on a regular basis. Once in a while, they collaborate.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH