Toward Preventing Transplant Rejection with Immunologically Matched Stem Cells

Matching the immunological characteristics of donor retinal cells to those of the recipient can reduce the chance of rejection.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

FLICKR, RUTH HARTNUPDonor stem cell–derived retinal epithelial cells whose immune proteins correspond to those of a recipient are tolerated following transplant into monkeys’ eyes, according to a report published today (September 15) in Stem Cell Reports. In an accompanying paper, the team also reports that such immune-matched retinal cells derived from humans prevent immune responses in cultured human lymphocytes.

“These are extremely important studies that provide an attractive solution to one of the main problems in regenerative medicine. They show that cells derived from HLA [human leukocyte antigen]-matched homozygous donors could be used to treat patients without the need for powerful immunosuppressive drugs, which of course are associated with cancer, infections, and a long list of other side effects,” said stem cell researcher Robert Lanza of the Astellas Institute for Regenerative Medicine in Marlborough, Massachusetts, who was not involved in the work.

The major histocompatibility complex (MHC)—or, as it’s called in humans, the human leukocyte antigen (HLA) system—is a family of proteins differentially expressed on the surface of cells that enables the body’s immune system to distinguish self from non-self and react accordingly. Indeed, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo
Sapio Sciences logo

Sapio Sciences Introduces Biorepository Management Solution