Toward Yeast–Based Opioid Production

Synthetic biologists introduce bacterial and poppy plant genes into yeast to manufacture morphine.

Written byTracy Vence
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, RAINIS VENTAIn 2008, a team led by Stanford University’s Christina Smolke, then at Caltech, showed in Nature Chemical Biology that engineered yeast (Saccharomyces cerevisiae) could produce benzylisoquinoline alkaloid (BIA) metabolites, including the alkaloids from which morphine is derived. Now, in a paper published today (August 24) in the same journal, Smolke’s team shows that S. cerevisiae engineering to express additional enzymes can be coaxed to synthesize naturally occurring opiates and semisynthetic opioids from BIA precursor molecules. The results represent a step toward engineered yeast–based biomanufacturing of morphine.

“The authors have demonstrated that it is possible to develop a technology platform in yeast that allows the transformation of [the opiate alkaloid] thebaine to a variety of opiate drugs by mixing and matching microbial and plant enzymes,” biochemist Neil Bruce from the University of York, U.K., told The Scientist in an e-mail. “This is elegant piece of synthetic biology . . . and demonstrates that it may ultimately be possibly to generate a [complete] morphinian biosynthetic pathway in yeast.”

Smolke and her colleagues have been working to reconstruct this pharmaceutically relevant pathway in yeast for nearly a decade. “When we started this project about 10 years ago, we were interested in plant natural product pathways [and] developing new ways to source these compounds because ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research