Toxin Evolution

Researchers show that scorpion venom toxins are closely related to defensive proteins from venomous insects.

Written byAbby Olena, PhD
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

MICHAEL L. BAIRD, FLICKR.BAIRDPHOTOS.COMThe genomes of both vertebrates and invertebrates encode defensins, defensive proteins that protect the organism from pathogens. Scientists have previously suggested that defensins and the toxins found in the venom of scorpions share an evolutionary ancestor, but it was unclear how the toxins originated. Now, an international team of researchers has shown that a defensin from a venomous insect can be easily converted to a toxin with just one genetic deletion. Their work was published in Molecular Biology and Evolution this week (January 14).

The researchers first analyzed the sequences of scorpion venom toxins—called α-KTxs because they block voltage-gated K+ channels—and found the portions of the sequences related to structure and function. Then they looked for these “scorpion toxin signatures” in the genomes of other animals. The signatures were present in the defensins of six species of venomous insects from the orders Hemiptera and Hymenoptera. The team found that a loop in the protein structure of the insect defensins made it impossible for them to bind voltage-gated K+ channels. When the researchers deleted this loop in one insect defensin, it looked and behaved like an α-KTx, binding to voltage-gated K+ channels in the same way.

“It is surprising that only insect defensins from venomous insects contain scorpion toxin signatures,” ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo