Tracking the Evolutionary History of a Tumor

Analyzing single cell sequences to decipher the evolution of a tumor

Written byAmber Dance
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

TREE GROWING: BitPhylogeny created this clonal tree from the exome sequences of 58 blood cancer cells. Each node of the tree is a clone (a–i) and the numbers indicate how many cells are in that clone. Certain clones, with 0 cells, were inferred from the data to have existed.K. YUAN ET AL., GENOME BIOL, 16:36, 2015 By the time a person arrives at the doctor’s office with a tumor, a lot has already happened at the cellular—and genomic—level. That cancer sprang from one mutant cell that spawned a mass of cells with additional nucleotide changes and diverse phenotypes.

To understand the evolutionary history of a cancer, scientists are turning to single-cell sequencing. Conceptually, building a tumor’s family tree is fairly simple: “Cells that have mutation A come before cells that have mutation A and mutation B,” explains Aaron Diaz, a glioblastoma researcher at the University of California, San Francisco. Of course, most tumors are a bit more complicated than just two mutations. From the sequences of dozens of individual cells from the same tumor, computational algorithms build their best guess at how a person’s cancer evolved. This gives researchers an idea of what mutations happened early versus late, how cells might have evolved drug resistance or the ability to metastasize, and what treatments might work best.

Each tumor will yield its own unique ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Amber Dance is an award-winning freelance science journalist based in Southern California. After earning a doctorate in biology, she re-trained in journalism as a way to engage her broad interest in science and share her enthusiasm with readers. She mainly writes about life sciences, but enjoys getting out of her comfort zone on occasion.

    View Full Profile

Published In

April 2017

Targeting Tumors

Precision aim to spare healthy cells

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo