Transcriptomics for the Animal Kingdom

Using RNA-seq to study nonmodel organisms

Written byAmy Maxmen
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

PROXY GENOME: The Glanville fritillary butterfly (Melitaea cinxia), which Christopher Wheat studies, is an important model species for studying population dynamics, specifically how variation in gene expression affects ecology.© JIM MARDENIf DNA is the architect’s blueprint, then RNA is the contractor that determines what actually gets built in a cell. Gene-expression analyses, as measured by RNA levels, can reveal why two genetically similar species, such as chimpanzees and humans, differ so much. Within an individual, gene expression determines where a pinky forms, as opposed to a thumb. For years, biologists had been able to assess RNA levels more easily in model organisms whose genomes had been sequenced, and researchers who did not focus on model organisms were mainly left in the dark.

Rather than ask which genes within their species’ genomes turn on at a particular time or in response to a particular environmental change, biologists studying nonmodel organisms were forced to fish for genes already identified in model animals. For example, a centipede researcher could only answer with certainty whether the many-legged creature activated the same genes as D. melanogaster as it grew its antennae.

With the advent of high-throughput, next-generation sequencing of RNA, called RNA-seq, this obstacle has largely been overcome. The technology allows zoologists to affordably and efficiently analyze gene activity in organisms that don’t have sequenced genomes, by building a transcriptome, which includes all of the RNA molecules produced by an organism—in all of its tissues and across its major life stages. Chopped ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies