Transcriptomics for the Animal Kingdom

Using RNA-seq to study nonmodel organisms

| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

PROXY GENOME: The Glanville fritillary butterfly (Melitaea cinxia), which Christopher Wheat studies, is an important model species for studying population dynamics, specifically how variation in gene expression affects ecology.© JIM MARDENIf DNA is the architect’s blueprint, then RNA is the contractor that determines what actually gets built in a cell. Gene-expression analyses, as measured by RNA levels, can reveal why two genetically similar species, such as chimpanzees and humans, differ so much. Within an individual, gene expression determines where a pinky forms, as opposed to a thumb. For years, biologists had been able to assess RNA levels more easily in model organisms whose genomes had been sequenced, and researchers who did not focus on model organisms were mainly left in the dark.

Rather than ask which genes within their species’ genomes turn on at a particular time or in response to a particular environmental change, biologists studying nonmodel organisms were forced to fish for genes already identified in model animals. For example, a centipede researcher could only answer with certainty whether the many-legged creature activated the same genes as D. melanogaster as it grew its antennae.

With the advent of high-throughput, next-generation sequencing of RNA, called RNA-seq, this obstacle has largely been overcome. The technology allows zoologists to affordably and efficiently analyze gene activity in organisms that don’t have sequenced genomes, by building a transcriptome, which includes all of the RNA molecules produced by an organism—in all of its tissues and across its major life stages. Chopped ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Amy Maxmen

    This person does not yet have a bio.

Published In

Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer