Two Studies Fail to Replicate Magnetogenetics Research

The new work calls into question the idea that neurons can be genetically engineered to fire in response to magnetic fields, a setback for the budding technique.

Written byKatarina Zimmer
| 9 min read
magnetogenetics neuroscience techniques

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

Update (October 1): On September 30, Nature Neuroscience published the work by Zhu’s and Celikel’s groups, along with a third article also finding Magneto ineffective and a reply from Güler.

ABOVE: © ISTOCK.COM, PLANET FLEM

Several recent studies in high-profile journals reported to have genetically engineered neurons to become responsive to magnetic fields. In doing so, the authors could remotely control the activity of particular neurons in the brain, and even animal behavior—promising huge advances in neuroscientific research and speculation for applications even in medicine. “We envision a new age of magnetogenetics is coming,” one 2015 study read.

But now, two independent teams of scientists bring those results into question. In studies recently posted as preprints to bioRxiv, the researchers couldn’t replicate those earlier findings.

“Both studies . . . appear quite meticulously executed from a biological standpoint—multiple tests were performed across multiple biological testbeds,” writes Polina Anikeeva, a materials ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • katya katarina zimmer

    After a year teaching an algorithm to differentiate between the echolocation calls of different bat species, Katarina decided she was simply too greedy to focus on one field of science and wanted to write about all of them. Following an internship with The Scientist in 2017, she’s been happily freelancing for a number of publications, covering everything from climate change to oncology. Katarina is a news correspondent for The Scientist and contributes occasional features to the magazine. Find her on Twitter @katarinazimmer and read her work on her website.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH