Week in Review: November 18–22

Chilly mice develop more tumors; gut bacteria aid cancer treatment; two Y chromosome genes sufficient for assisted reproduction; HIV’s “invisibility cloak”

Written byTracy Vence
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

KATHLEEN KOKOLUS AND ELIZABETH REPASKYMice housed in laboratories beneath their natural body temperature of 30°C or 31°C are less able to fend off tumors than animals kept in warmer rooms. Roswell Park Cancer Institute’s Elizabeth Repasky and her colleagues found that compared with their counterparts housed at a comfortable temperature for humans—between 20°C and 26°C—mice injected with tumor cells and kept at 30°C to 31°C showed reduced tumor formation and metastasis, effects mediated by the adaptive immune system. Their work was published this week (November 18) in Proceedings of the National Academy of Sciences.

“It’s one of the things that’s under everybody’s nose, and nobody really thought about it much,” Duke University’s Mark Dewhirst, who was not involved in the work, told The Scientist. “Everybody thought that mice would be fine at room temperature, but nobody ever thought to look.”

WIKIMEDIA, NCIBacteria lining the guts of mice help animals being treated for cancerous tumors by triggering inflammatory and immune system responses. Germ-free or antibiotic-treated mice fared worse than their microbe-laden counterparts, according to two independent studies out this week (November 21) in Science, led by researchers at INSERM in France and the National Cancer Institute.

“Most of the time we think about the gut microbiome shaping the local environment. Now these papers are breaking the glass ceiling and going into extra-intestinal organs . . . and influencing activities of drugs,” said Christian Jobin from the University of Florida, who reviewed both studies but was not involved in either.

“Both ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH