What Causes Alzheimer’s?

Researchers and pharma companies have tried to attack this disease by reducing amyloid plaques, but inflammation may be the real culprit.

Written byW. Sue T. Griffin
| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

GETTYIMAGES, BENNY DE GROVE

Alzheimer’s is still a disease that is routinely diagnosed only after death and autopsy. Then, it is easy to recognize the disease’s cardinal features: a shrunken brain dotted with amyloid plaques interspersed among neurons containing tangled fibrils, which may also contain inclusions similar to those found in the brains of Parkinson’s patients. These irrefutable histological markers of Alzheimer’s have led the majority of researchers to conclude that amyloid plaques are the pathogenic entity of the disease. But there is still no smoking gun that definitively singles out the plaques as the causative agent. Amyloid is the scientific equivalent of a culprit assumed guilty until proven innocent. Although many pharmaceutical companies vigorously took aim at amyloid, so far there is no unequivocal evidence that clearing plaques ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH