Whole-Genome Data Point to Four Species of Giraffe

The genome sequences of 51 giraffes from all over Africa contribute to the latest attempt in an ongoing pursuit to pin down a species number.

Written byRuth Williams
| 4 min read
A reticulated giraffe in Samburu National Park, Kenya

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: Giraffa reticulata in Samburu National Park, Kenya
GIRAFFE CONSERVATION FOUNDATION, JULIAN FENNESSY

After performing the most detailed genomic sequence analysis to date of the world’s tallest land animal, researchers argue for the existence of four distinct giraffe species. But their report, published yesterday (May 5) in Current Biology, appears not to have settled the long-standing debate among giraffe experts on precise species numbers, with some still arguing there are likely more species and others fewer.

“This is really state-of-the-art genetic data [and] a tremendous contribution to science,” says evolutionary geneticist Rasmus Heller of the University of Copenhagen who was not involved in the research. “It’s really nice that we finally have whole genome data on this scale for giraffes,” he adds, noting that having numerous genomes representing so many giraffe populations is “not easy to get.” As to whether he thinks the data confirm the existence of four and only ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Discover how to streamline tumor-infiltrating lymphocyte production.

Producing Tumor-infiltrating Lymphocyte Therapeutics

cytiva logo
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery