Whole-Genome Data Point to Four Species of Giraffe

The genome sequences of 51 giraffes from all over Africa contribute to the latest attempt in an ongoing pursuit to pin down a species number.

Written byRuth Williams
| 4 min read
A reticulated giraffe in Samburu National Park, Kenya

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: Giraffa reticulata in Samburu National Park, Kenya
GIRAFFE CONSERVATION FOUNDATION, JULIAN FENNESSY

After performing the most detailed genomic sequence analysis to date of the world’s tallest land animal, researchers argue for the existence of four distinct giraffe species. But their report, published yesterday (May 5) in Current Biology, appears not to have settled the long-standing debate among giraffe experts on precise species numbers, with some still arguing there are likely more species and others fewer.

“This is really state-of-the-art genetic data [and] a tremendous contribution to science,” says evolutionary geneticist Rasmus Heller of the University of Copenhagen who was not involved in the research. “It’s really nice that we finally have whole genome data on this scale for giraffes,” he adds, noting that having numerous genomes representing so many giraffe populations is “not easy to get.” As to whether he thinks the data confirm the existence of four and only ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies