Why Bats Make Such Good Viral Hosts

The bat version of the STING protein helps dampen the mammals' immune response to infection, researchers have found.

katya katarina zimmer
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ANDRZEJ KRAUZEBats carry and transmit some of the world’s deadliest zoonotic viruses: Ebola, Marburg, Nipah, and the pathogen behind severe acute respiratory syndrome, SARS coronavirus, to name a few. What has puzzled researchers for a long time is why bats don’t appear to get sick from their unusually high microbial loads. The question has been nagging Peng Zhou, a virologist at China’s Wuhan Institute of Virology, for more than a decade, ever since he took part in a survey of bat populations in southern China. Zhou and his colleagues were looking for the strain of the SARS coronavirus responsible for the 2003 outbreak that sickened more than 8,000 people worldwide and killed nearly 800. “We started to think, why bats?” he says.

Other researchers have suggested that bats’ super-tolerance might have something to do with their ability to generate large repertoires of naïve antibodies, or that flight ramps up the animals’ body temperatures to a fever-like state that helps fight off infections. But in 2013, Zhou and his colleagues stumbled across another clue during a comparative genomics study of two distantly related bat species. The genes that showed some of the strongest evidence of positive selection, the team found, appeared to be related to DNA damage and innate immunity (Science, 339:456-60). “We thought we needed to go further and work on the molecular mechanics,” says Zhengli Shi, Zhou’s colleague at the Wuhan Institute and a coauthor on the study.

The team decided to focus on a protein ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • katya katarina zimmer

    Katarina Zimmer

    After a year teaching an algorithm to differentiate between the echolocation calls of different bat species, Katarina decided she was simply too greedy to focus on one field. Following an internship with The Scientist in 2017, she has been happily freelancing for a number of publications, covering everything from climate change to oncology.

Published In

June 2018

Microbial Treasure

Newly discovered archaea reveal bizarre biology

Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD
The Scientist Placeholder Image

Streamlining Microbial Quality Control Testing

MicroQuant™ by ATCC logo

Products

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies

waters-logo

How Alderley Analytical are Delivering eXtreme Robustness in Bioanalysis