Zika Infects Neural Progenitors

Scientists provide a potential biological link between Zika virus infection and microcephaly.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Zika virus (green) infects human neural progenitors and leads to cell death (red).SARAH C. OGDENLaboratory-grown human neural progenitor cells, which can give rise to the kind of neurons and glia found in the brain, can be infected and killed by a strain of Zika virus, according to a report published today (March 4) in Cell Stem Cell. The study, albeit preliminary, offers the first suggestion of how Zika infection of pregnant women might lead to microcephaly in their babies.

“The study demonstrates that human neuron-like cells can be infected with Zika virus and that infection leads to death and reduced growth of the infected cells,” said microbiologist and immunologist Andrew Pekosz of Johns Hopkins University who was not involved in the study. “This is important because this may be a way to study the damage induced directly by infection.”

The number of infants born with microcephaly—a neurological condition in which the brain and skull fail to grow at a normal pace—have risen dramatically in Brazil since late 2015. An outbreak of Zika virus infections in the country last year is strongly suspected to be the cause, but while the virus has been detected in the amniotic fluid of two babies and the brain tissue ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research