Zika Infects Neural Progenitors

Scientists provide a potential biological link between Zika virus infection and microcephaly.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Zika virus (green) infects human neural progenitors and leads to cell death (red).SARAH C. OGDENLaboratory-grown human neural progenitor cells, which can give rise to the kind of neurons and glia found in the brain, can be infected and killed by a strain of Zika virus, according to a report published today (March 4) in Cell Stem Cell. The study, albeit preliminary, offers the first suggestion of how Zika infection of pregnant women might lead to microcephaly in their babies.

“The study demonstrates that human neuron-like cells can be infected with Zika virus and that infection leads to death and reduced growth of the infected cells,” said microbiologist and immunologist Andrew Pekosz of Johns Hopkins University who was not involved in the study. “This is important because this may be a way to study the damage induced directly by infection.”

The number of infants born with microcephaly—a neurological condition in which the brain and skull fail to grow at a normal pace—have risen dramatically in Brazil since late 2015. An outbreak of Zika virus infections in the country last year is strongly suspected to be the cause, but while the virus has been detected in the amniotic fluid of two babies and the brain tissue ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control