Zooming In on an Antidepressant Target

Structural studies reveal how SSRI drugs bind to the human serotonin transporter.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share


WIKIMEDIA, TOKINOResearchers at the Vollum Institute in Portland, Oregon, have resolved the crystal structures of the human serotonin transporter (SERT) bound to two different antidepressant drugs. The structures show where the drugs bind, how they inhibit transporter function, and offer insights for the design and development of new psychiatric pharmaceuticals.

“There are no other human transporters in this family that have been crystallized and where we know the structure, so [the paper] is a milestone in that sense,” said pharmacologist Gary Rudnick of Yale University who was not involved in the study. “The structure can be used to understand details about the way the protein works, the way it binds ligands [and] for drug development,” he added.

Serotonin is a neurotransmitter that influences neurological systems such as mood, sleep, cognition, and hunger. Selective serotonin reuptake inhibitors (SSRIs) are drugs that prolong the presence, and thus activity, of serotonin in neural synapses, and are used in the treatment of depression, anxiety and other related disorders. They work by binding and inactivating SERT, which normally transports serotonin ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide