Three-dimensional (3D) cell culture is an attractive alternative to animal model research, and it is a predictive method for drug discovery and compound screening. By incorporating extracellular matrix (ECM) and other relevant factors, researchers design microenvironments in 3D cell culture that mirror those in vivo and provide the cues required for physiologically-relevant cell growth in vitro. These cues drive proper cell behavior to extend proliferation time and closely simulate in vivo metabolic activity.1 In 3D cell culture, researchers can also perform co-culture experiments with different cell types to further mirror the in vivo microenvironment. These advantages are especially important during drug development when scientists screen for relevant targets and perform safety testing.
Even with these benefits, many researchers continue to perform their cell culture experiments in 2D. Using 3D cultures for drug discovery is particularly difficult because cell cultivation in 3D on a large scale, with automation, in a reproducible ...