A Common Atrial Fibrillation Procedure Is Aided by Damaging Neurons

Patients in a study of catheter ablation who showed signs of more injury to nerve cells and glia in the heart had fewer symptoms after the treatment.

Written byEmma Yasinski
| 4 min read
cardiac heart catheter ablation atrial fibrillation s100b

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: X-ray of a catheter ablation procedure, not from this study
© ISTOCK.COM, ZILLI

Injuring neurons, especially those involved in regulating a person’s heartbeat, sounds like a bad idea, but such “collateral” damage to nerve cells in the heart during catheter ablation—a common, but not fully understood, procedure used to treat atrial fibrillation—may actually lead to better outcomes, according to a study of mice and humans published on Wednesday (May 22) in Science Translational Medicine. Using a biomarker of injury to neurons and glia called S100B, the researchers find that patients with a greater increase in levels of the protein had fewer symptoms after the treatment than patients who experienced only a small rise in S100B.

“We were expecting that more neural damage would be bad for the patient,” Katharina Scherschel, a scientist at University Heart and Vascular Center UKE Hamburg and the lead author of the study, tells The Scientist, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • emma yasinski

    Emma is a Florida-based freelance journalist and regular contributor for The Scientist. A graduate of Boston University’s Science and Medical Journalism Master’s Degree program, Emma has been covering microbiology, molecular biology, neuroscience, health, and anything else that makes her wonder since 2016. She studied neuroscience in college, but even before causing a few mishaps and explosions in the chemistry lab, she knew she preferred a career in scientific reporting to one in scientific research.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH