A Common Atrial Fibrillation Procedure Is Aided by Damaging Neurons

Patients in a study of catheter ablation who showed signs of more injury to nerve cells and glia in the heart had fewer symptoms after the treatment.

Written byEmma Yasinski
| 4 min read
cardiac heart catheter ablation atrial fibrillation s100b

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: X-ray of a catheter ablation procedure, not from this study
© ISTOCK.COM, ZILLI

Injuring neurons, especially those involved in regulating a person’s heartbeat, sounds like a bad idea, but such “collateral” damage to nerve cells in the heart during catheter ablation—a common, but not fully understood, procedure used to treat atrial fibrillation—may actually lead to better outcomes, according to a study of mice and humans published on Wednesday (May 22) in Science Translational Medicine. Using a biomarker of injury to neurons and glia called S100B, the researchers find that patients with a greater increase in levels of the protein had fewer symptoms after the treatment than patients who experienced only a small rise in S100B.

“We were expecting that more neural damage would be bad for the patient,” Katharina Scherschel, a scientist at University Heart and Vascular Center UKE Hamburg and the lead author of the study, tells The Scientist, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • emma yasinski

    Emma is a Florida-based freelance journalist and regular contributor for The Scientist. A graduate of Boston University’s Science and Medical Journalism Master’s Degree program, Emma has been covering microbiology, molecular biology, neuroscience, health, and anything else that makes her wonder since 2016. She studied neuroscience in college, but even before causing a few mishaps and explosions in the chemistry lab, she knew she preferred a career in scientific reporting to one in scientific research.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies