A New Way of Seeing

Inspiration and controversy attended the birth of magnetic resonance imaging, a diagnostic technology that changed the course of human medicine.

Written byM. Joan Dawson
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

MIT PRESS, AUGUST 2013Thomas Huxley, in his presidential address to the Royal Society in 1885, observed: “What an enormous revolution would be made in biology if physics or chemistry could supply the physiologist with a means of making out the molecular structure of living tissues comparable to that which the spectroscope affords to the inquirer into the nature of heavenly bodies.”

Andrew Huxley, a grandson of Thomas, noted in his own inaugural address in 1980 that his grandfather’s wishes came true with the invention of zeugmatography—better known today as magnetic resonance imaging, or MRI—by Paul Lauterbur in 1971. MRI would change the course of medicine. It became a leading diagnostic tool because it images the soft tissues of the body anatomically, biochemically, and functionally. It is noninvasive and safe, and unlike X-rays or CAT scans, uses no ionizing radiation. My recently published book, Paul Lauterbur and the Invention of MRI, is the story of the man, who was my husband, and his invention.

One day in 1971 Paul happened to observe some nuclear magnetic resonance (NMR) measurements on normal and malignant tissues and saw that the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH