A Tree Takes Root

Four apparently unrelated individuals share a common ancestor from whom they inherited a rare mutation that predisposed them to the cancer they share.

| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

TALKING TURKEY: Michele Carbone’s “office” in the Turkish village of Sarihidir. He traveled to the country to study cases of mesothelioma and try to determine the environmental or genetic drivers of the disease.COURTESY OF MICHELE CARBONE

Twenty years ago, when Michele Carbone first started studying malignant mesotheliomas (MM), nobody knew that genetics played a significant role in the development of the tumors, which grow in the mesothelium—the innermost layer of cells lining the insides of body cavities—and are associated with asbestos exposure. “Until 2011, when eventually we published that we had found the gene, many in the field thought I was crazy, and that there was not such a thing as a meso gene,” Carbone told The Scientist in an email. But he believed that the cancers had a genetic component, and he found an MM-predisposition gene, BRCA1-Associated Protein 1 (BAP1), which was very often mutated in patients from two US families with a high incidence of mesothelioma.

Most recently, Carbone’s ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ashley P. Taylor

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo