Added Neurons Are Functionally Integrated into Mouse Brain Circuits

In vivo imaging reveals how grafted embryonic brain cells grow, connect, and mature into contributing members of damaged visual pathways in adult mice.

Written byJenny Rood
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

FLICKR, NATIONAL INSTITUTE OF CHILD HEALTH AND HUMAN DEVELOPMENTTransplanted embryonic neurons can properly connect into the developed visual cortex of adult mice and improve the animals’ sensitivities to visual cues over time, scientists reported today (October 26) in Nature. By demonstrating that added neurons can become fully functional in circuits that normally do not rewire in adulthood, the team’s results suggest that the brain may be more plastic than previously thought.

“For the first time, the authors show that we can visualize and analyze in vivo maturation and integration of grafted neurons at the level of individual cells,” said neuroscientist Afsaneh Gaillard of the French National Institute of Health and Medical Research (INSERM) and the University of Poitiers, France, who was not involved in the research.

Magdalena Götz of Ludwig-Maximilians University and the Institute of Stem Cell Research at the Helmholtz Center in Munich, Germany, initially wanted to study how well new mouse neurons—created through direct neuronal reprogramming, a technique her group pioneered to turn glial cells into neurons—could integrate into adult brain circuits. Because no one had previously examined the function and connectivity of any transplanted neurons on a brain-wide scale, she and her colleagues ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo