All Is Not Quiet on the Western Front

A grab bag of advances is making Western blots faster, more sensitive, and more reliable.

Written byKelly Rae Chi
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

COURTESY OF ADVANSTA INC.If you don’t look too closely, Western blots are seemingly the same slog as when they were first described in 1979. You separate proteins by size (or charge) using gel electrophoresis, transfer them to a membrane, and probe the membrane using antibodies to your particular protein. Westerns have been a staple in protein research for many years, allowing researchers to identify, and sometimes semiquantify, proteins within tissues and cell cultures. It’s easy to take them for granted. At the same time, the familiar blots are often the subject of scrutiny, fodder for fraud, and the reason behind some research retractions.

Western blotting is moving in the right direction, though. In recent years, new reagents and instruments have made Westerns more sensitive and have condensed some of the main steps, namely electrophoresis, blotting, and visualization. Although many researchers still use chemiluminescence detection and X-ray film, the introduction of digital fluorescence imaging has boosted the technique’s sensitivity and reliability and pushed it into the “quantitative” rather than semiquantitative realm. New advances are also making it possible to study proteins in single cells, or to probe limited or precious samples—and to automate some parts of the process. And users are taking greater care in addressing the issue of reliable controls.

The Scientist spoke with researchers and companies working to make Westerns a little easier and more reliable. Here’s ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH