COURTESY OF ADVANSTA INC.If you don’t look too closely, Western blots are seemingly the same slog as when they were first described in 1979. You separate proteins by size (or charge) using gel electrophoresis, transfer them to a membrane, and probe the membrane using antibodies to your particular protein. Westerns have been a staple in protein research for many years, allowing researchers to identify, and sometimes semiquantify, proteins within tissues and cell cultures. It’s easy to take them for granted. At the same time, the familiar blots are often the subject of scrutiny, fodder for fraud, and the reason behind some research retractions.
Western blotting is moving in the right direction, though. In recent years, new reagents and instruments have made Westerns more sensitive and have condensed some of the main steps, namely electrophoresis, blotting, and visualization. Although many researchers still use chemiluminescence detection and X-ray film, the introduction of digital fluorescence imaging has boosted the technique’s sensitivity and reliability and pushed it into the “quantitative” rather than semiquantitative realm. New advances are also making it possible to study proteins in single cells, or to probe limited or precious samples—and to automate some parts of the process. And users are taking greater care in addressing the issue of reliable controls.
The Scientist spoke with researchers and companies working to make Westerns a little easier and more reliable. Here’s ...