Ancient Viruses as Gene Therapy Vectors

Researchers deploy ancestors of today’s adeno-associated viruses to deliver gene therapies without immune system interference.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Retinal targeting by Anc80LIVIA CARVALHOThe immune system is designed to protect the body, but it sometimes gets in the way—by rejecting potentially life-saving blood transfusions or organ transplants, for example. Because one of the most commonly used methods for delivering gene therapies involves viruses as vectors, scientists developing such treatments are working to circumnavigate the host immune response.

Adeno-associated viruses (AAVs) have shown promise as gene-therapy delivery vehicles in clinical trials evaluating treatments for hemophilia and a genetic form of blindness. Problem is, anywhere from 30 percent to 90 percent of people have already been exposed to AAVs—which are not pathogenic—and have developed immunity to them, said Luk Vandenberghe of the Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary in Boston. As a result, they are ineligible for AAV-based therapies. “And it could, for some of these diseases, actually be a life-or-death differentiation—enrolling in a gene therapy trial or not,” he said.

In an effort to generate gene therapy vectors that could evade the immune system, Vandenberghe and his colleagues deduced the evolutionary history of today’s AAVs. They then synthesized the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ashley P. Taylor

    This person does not yet have a bio.
Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

An illustration of different-shaped bacteria.

Leveraging PCR for Rapid Sterility Testing

Conceptual 3D image of DNA on a blue background.

Understanding the Nuts and Bolts of qPCR Assay Controls 

Bio-Rad