Animal Electricity, circa 1781

How an Italian scientist doing Frankenstein-like experiments on dead frogs discovered that the body is powered by electrical impulses.

Written byJessica P. Johnson
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

This illustration, from Galvani’s De Viribus Electricitatis in Motu Musculari, published in 1791, shows the experimental setup Galvani used to study the effect of atmospheric electricity on dead frogs.


In the mid-1780s, Italian physician Luigi Galvani connected the nerves of a recently dead frog to a long metal wire and pointed it toward the sky during a thunderstorm. With each flash of lightning, the frog’s legs twitched and jumped as if they were alive. It was this macabre scene that would inspire the British novelist Mary Shelley to write her gothic masterpiece, Frankenstein, 20 years after the physician’s 1798 death. But more importantly, through such experiments Galvani proved not only that recently-dead muscle tissue can respond to external electrical stimuli, but that muscle and nerve cells possess an intrinsic electrical force responsible for muscle contractions and nerve conduction in living organisms. Galvani named this newly discovered force “animal electricity,” and thus laid foundations for the modern fields of electrophysiology and neuroscience.

Galvani’s contemporaries—including Benjamin Franklin, whose work helped prove the existence of atmospheric electricity—had made great strides in understanding the nature of electricity and how to produce it. Inspired by Galvani’s discoveries, fellow Italian scientist Alessandro Volta would go on to invent, in 1800, the first electrical battery—the voltaic pile—which consisted of brine-soaked pieces of cardboard or cloth sandwiched between disks of different metals. But Volta voiced serious reservations about Galvani’s “animal electricity,” sparking an intense debate that would rage for the last six years of Galvani’s life. Volta believed the source of animal electricity was not intrinsic to the muscle tissue or nerve fibers themselves, as Galvani asserted, but that the animals reacted to electricity produced by two different metals used to connect their nerves ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Add The Scientist as a preferred source on Google

Add The Scientist as a preferred Google source to see more of our trusted coverage.

Related Topics

Meet the Author

Published In

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Graphic of amino acid chains folded into proteins

Expi293™ PRO Expression System: Higher Yields Across a Wider Variety of Proteins

Thermo Fisher Logo