Animal Electricity, circa 1781

How an Italian scientist doing Frankenstein-like experiments on dead frogs discovered that the body is powered by electrical impulses.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

This illustration, from Galvani’s De Viribus Electricitatis in Motu Musculari, published in 1791, shows the experimental setup Galvani used to study the effect of atmospheric electricity on dead frogs.


In the mid-1780s, Italian physician Luigi Galvani connected the nerves of a recently dead frog to a long metal wire and pointed it toward the sky during a thunderstorm. With each flash of lightning, the frog’s legs twitched and jumped as if they were alive. It was this macabre scene that would inspire the British novelist Mary Shelley to write her gothic masterpiece, Frankenstein, 20 years after the physician’s 1798 death. But more importantly, through such experiments Galvani proved not only that recently-dead muscle tissue can respond to external electrical stimuli, but that muscle and nerve cells possess an intrinsic electrical force responsible for muscle contractions and nerve conduction in living organisms. Galvani named this newly discovered force “animal electricity,” and thus laid foundations for the modern fields of electrophysiology and neuroscience.

Galvani’s contemporaries—including Benjamin Franklin, whose work helped prove the existence of atmospheric electricity—had made great strides in understanding the nature of electricity and how to produce it. Inspired by Galvani’s discoveries, fellow Italian scientist Alessandro Volta would go on to invent, in 1800, the first electrical battery—the voltaic pile—which consisted of brine-soaked pieces of cardboard or cloth sandwiched between disks of different metals. But Volta voiced serious reservations about Galvani’s “animal electricity,” sparking an intense debate that would rage for the last six years of Galvani’s life. Volta believed the source of animal electricity was not intrinsic to the muscle tissue or nerve fibers themselves, as Galvani asserted, but that the animals reacted to electricity produced by two different metals used to connect their nerves ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jessica P. Johnson

    This person does not yet have a bio.

Published In

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio