Architecture Reveals Genome’s Secrets

Three-dimensional genome maps are leading to a deeper understanding of how the genome’s form influences its function.

Written bySabrina Richards
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Human chromosome.Hans RisGenome sequencing projects have provided rich troves of information about stretches of DNA that regulate gene expression, as well as how different genetic sequences contribute to health and disease. But these studies misses a key element of the genome—its spatial organization—which has long been recognized as an important regulator of gene expression. Regulatory elements often lie thousands of base pairs away from their target genes, and recent technological advances are allowing scientists to begin examining how distant chromosome locations interact inside a nucleus. The creation and function of 3-D genome organization, some say, is the next frontier of genetics.

Genome spatial organization is critical for gene regulation, explained Job Dekker, a molecular geneticist at the University of Massachusetts Medical School, and “everything else chromosomes do involves three dimensions,” as well. Chromosomes have to replicate, separate properly during division, and change shape during the cell cycle—all without tangling. The genome is “rebuilt entirely after cell division,” Dekker said.

The mechanisms for such delicate orchestration have remained unclear, however. About 10 years ago—just as the human genome project was completing its first draft sequence—Dekker pioneered a new technique, called chromosome conformation capture (C3) that allowed researchers to get a glimpse of how chromosomes are arranged relative to each other in the nucleus. The technique relies on the physical cross-linking of chromosomal regions that lie in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo
Discover how to streamline tumor-infiltrating lymphocyte production.

Producing Tumor-infiltrating Lymphocyte Therapeutics

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery