Artificial Heart Valves Grow with Lambs

Two of the implanted valves lasted a full year as the animals matured into adult sheep, demonstrating that it might be possible to treat children with valve replacements that grow along with them.

Written byEmma Yasinski
| 3 min read
artificial heart valve replacement cardiac implant transplant scaffold bioengineering bioprosthetic lamb pediatrics cardiology

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: The heart valve replacement developed by Tranquillo and colleagues
SYEDAIN, ET AL., TRANQUILLO LAB, UNIVERSITY OF MINNESOTA

A new type of artificial heart valve transplanted into lambs maintained function and grew with the animals for up to a year, scientists reported March 17 in Science Translational Medicine.

“For pediatric patients in need of valve replacements, a tissue-engineered valve that will grow with the patient and can potentially be populated by the patient’s own cells is the holy grail,” says Daniel Levi, a pediatric cardiologist at UCLA Health who was not involved in the study. But, he cautions, “We often see very promising results in the lab and in animals that can’t be replicated in humans.”

There are two main options for patients who need heart valve replacements: a purely mechanical valve, which increases the risk of blood clots, and a bioprosthetic option made from animal tissues. Neither will last long ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • emma yasinski

    Emma is a Florida-based freelance journalist and regular contributor for The Scientist. A graduate of Boston University’s Science and Medical Journalism Master’s Degree program, Emma has been covering microbiology, molecular biology, neuroscience, health, and anything else that makes her wonder since 2016. She studied neuroscience in college, but even before causing a few mishaps and explosions in the chemistry lab, she knew she preferred a career in scientific reporting to one in scientific research.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH