Bacterial Insecticide Resistance

By cultivating detoxifying bacteria in its gut, a pest called the bean bug can become instantly resistant to a common insecticide.

Written byEd Yong
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A bean bug, and its digestive system, showing where the symbiotic bacteria live. KIKUCHI ET AL

Japanese scientists have found that the bean bug, a major pest of soybean crops, swallows bacteria that break down an insecticide chemical. The bacteria allow it to continue munching on treated crops will no ill effects, according to a study published today (April 23) in the Proceedings of the National Academy of Sciences.

Insecticide resistance typically takes many generations to evolve, usually because tweaks to the insects’ own genomes. But the bean bug’s strategy allows it to acquire such resistance with unprecedented speed by exploiting the genes of bacterial partners.

“It makes perfect sense,” said Nancy Moran, an evolutionary biologist at Yale University, who was not involved in this study. “Bacteria have a much greater diversity of enzymatic functions than do animals.”

While the phenomenon ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH