Beauty, Science-Deep

Cosmetics companies use advanced genomics and in vitro technology to make skin look young and vibrant—you may never view the makeup aisle the same way again.

Written byAmber Dance
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

© PKM1/ISTOCKPHOTO.COMThe trendy look for this season’s cosmetics lab is high-tech instruments and tools. Researchers are using gene microarrays to understand what makes young skin taut and even-toned, and to find out why older epidermis sags, wrinkles, or develops spots. They can then hunt for molecules that activate those same genes in aging or sun-damaged skin. A number of skin-care lines, such as Olay products, already contain ingredients based on microarray work.

Another way makeup makers develop new products is to examine the metabolism of skin cells. A healthy cell, with active mitochondria, is a comely cell. Old cells with fewer or malfunctioning mitochondria look aged. Modern devices can infer metabolic rate based on oxygen consumption and the acidic by-products released by cell cultures into the media in which the cells are grown.

Cultured skin is crucial to in vitro studies of personal-care products. One of the best mimics for the human integument is, not surprisingly, made of human skin. Epidermal cells from elective surgery, dissociated and reconstituted, are common in cosmetics labs where scientists daub on new compounds and test the safety of different formulations.

In fact, these days, product safety testing often takes place in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Amber Dance is an award-winning freelance science journalist based in Southern California. After earning a doctorate in biology, she re-trained in journalism as a way to engage her broad interest in science and share her enthusiasm with readers. She mainly writes about life sciences, but enjoys getting out of her comfort zone on occasion.

    View Full Profile

Published In

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel