Beauty, Science-Deep

Cosmetics companies use advanced genomics and in vitro technology to make skin look young and vibrant—you may never view the makeup aisle the same way again.

Written byAmber Dance
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

© PKM1/ISTOCKPHOTO.COMThe trendy look for this season’s cosmetics lab is high-tech instruments and tools. Researchers are using gene microarrays to understand what makes young skin taut and even-toned, and to find out why older epidermis sags, wrinkles, or develops spots. They can then hunt for molecules that activate those same genes in aging or sun-damaged skin. A number of skin-care lines, such as Olay products, already contain ingredients based on microarray work.

Another way makeup makers develop new products is to examine the metabolism of skin cells. A healthy cell, with active mitochondria, is a comely cell. Old cells with fewer or malfunctioning mitochondria look aged. Modern devices can infer metabolic rate based on oxygen consumption and the acidic by-products released by cell cultures into the media in which the cells are grown.

Cultured skin is crucial to in vitro studies of personal-care products. One of the best mimics for the human integument is, not surprisingly, made of human skin. Epidermal cells from elective surgery, dissociated and reconstituted, are common in cosmetics labs where scientists daub on new compounds and test the safety of different formulations.

In fact, these days, product safety testing often takes place in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Amber Dance is an award-winning freelance science journalist based in Southern California. After earning a doctorate in biology, she re-trained in journalism as a way to engage her broad interest in science and share her enthusiasm with readers. She mainly writes about life sciences, but enjoys getting out of her comfort zone on occasion.

    View Full Profile

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies