Before the Genes Jumped, 1930s

How Nobel Laureate Barbara McClintock nearly gave up genetics for meteorology

Written bySabrina Richards
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Portrait of Barbara McClintock, 1947THE BARBARA MCCLINTOCK COLLECTION, COLD SPRING HARBOR LABORATORY ARCHIVES

Barbara McClintock’s pioneering work in genetics began just two decades after biologists rediscovered Gregor Mendel’s work on heredity in 1900. After refining chromosome-staining techniques, McClintock became the first person to visualize and count the chromosomes of maize in 1928—a feat that jump-started her lifelong career in cytogenetics. In 1931, McClintock and her student Harriet Creighton used the characteristic structure of chromatin to demonstrate that genes corresponded to physical locations on chromosomes. Using an identifying knob on chromosome 9 as a guidepost, they localized certain traits on the chromosome, and demonstrated that chromosomes could “cross-over” and exchange genetic information. McClintock was awarded a Nobel Prize in 1983 for the discovery of transposable elements—snippets of the genome that can be prompted to switch places, often influencing gene ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies