Biochemist Hans Kornberg Dies

An expert on carbohydrate transport, Kornberg contributed to the discovery of several metabolic cycles in microorganisms during his seven-decade career.

Written byCatherine Offord
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Hans Leo Kornberg, a biochemist at Boston University credited with discovering the glyoxylate cycle in microbes, died late last year (December 16). He was 91.

One of the first researchers to use radioactive carbon labeling to trace compounds through metabolic pathways, Kornberg coauthored more than 250 scientific publications over his 70-year career and was internationally recognized as an expert on carbon metabolism in microbes.

“Sir Hans will be greatly missed by his colleagues and students,” Boston University says in a statement. “Not just a brilliant biochemist and skilled educator, Dr. Kornberg always had an anecdote or witty story at hand. . . . [He’s] remembered for his generosity, incredible wit, many stories, endless puns, and cheerful nature.”

Born in Herford, Germany, in 1928, Kornberg emigrated to the UK in 1939 as a child refugee fleeing Nazi Germany. His parents died in the Holocaust, and he was raised by his uncle ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH