Bioengineers Use Yeast to Manufacture Drugs

The yeast’s output of noscapine, a cough suppressant naturally made by poppies, is 18,000-fold higher than previous attempts.

Written byJim Daley
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

KARL GRUBER, WIKIMEDIA

In a study published yesterday (April 2) in PNAS, researchers describe how they genetically engineered a strain of brewer’s yeast, Saccharomyces cerevisiae, to produce noscapine, a nonnarcotic cough suppressant produced naturally by opium poppies. The scientists included an array of genes from various organisms to build the biosynthetic pathway in the yeast.

“This is a technology that’s going to change the way we manufacture essential medicines,” says coauthor Christina Smolke, a synthetic biologist at Stanford University, in a statement. “Traditionally, we’ve gotten our medicines from the natural world, mainly from plants. But the plants’ molecular assembly lines have evolved to optimize the plants’ survival, not to churn out buckets of one substance we humans want to get our hands on.”

Smolke and her colleagues inserted ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH